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It is well known that the small perturbation equation governing steady or mildly 
unsteady potential flow in a sonic gas jet is nonlinear. However, for a sonic gas jet 
submerged in a liquid with a disturbance on the gas-liquid interface, it is shown 
that the transient motion of the gas dominates, and the nonlinear term due to 
accumulation of disturbances in the basic flow becomes negligible; the condition 
necessary for the applicability of the linearized governing equation is obtained. 
It is demonstrated that most gas-jetlliquid systems of physical interest satisfy 
t,his condition and that the margin with which this condition is satisfied improves 
as the wave velocity of the disturbance or, more particularly, as the stagnation 
pressure or density of the gas for a given gas-liquid system increases. The Kelvin- 
Helmholtz instability of the gas-liquid interface of a sonic gas jet submerged in 
a liquid is predominantly governed by the transfer of energy from the gas phase 
to the liquid layer, both through wave-drag and ‘lift’ components of the pressure 
perturbation; at and above the cut-off wavenumber, which only exists for very 
low viscosity liquids owing t.0 the stabilizing effect of surface tension, the pressure 
perturbation becomes in phase with the wave amplitude. It is shown that for low 
viscosity liquids the phase angle between the pressure perturbation exerted by 
the gas phase on the liquid a t  the gas-liquid interface and the wave amplitude, 
which is the measure of the relative effectiveness of the ‘lift’ and wave-drag 
components of the pressure perturbation, is a function of the density ratio (ratio 
of gas density a t  throat conditions to liquid density). At low density ratios both 
of these components are operative; however, a t  high density ratios the wave-drag 
component becomes dominant. The analysis further shows that the cut-off wave- 
number and the wavenumber a t  maximum instability decrease with increasing 
density ratio. For highly viscous liquids and liquids having finite viscosity the 
pressure perturbation is always out of phase with the wave amplitude, and no 
cut-off wavenumber exists, i.e. the gas-liquid interface is always unstable in 
spite of the stabilizing effect of viscosity and surface tension. 

1. Introduction 
Several investigators have examined analytically the Kelvin-Helmholtz 

instability of a gas-liquid interface. Chang & Russell (1965) analysed the case of 
a plane liquid layer exposed to subsonic and supersonic gas strea,ms. Nachtsheim 
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(1970) has considered the three-dimensional disturbance of a shear flow of a thin 
liquid film adjacent to a supersonic gas stream with wave fronts oblique to  the 
external streanl. A nonlinear analysis of the Kelvin-Helmholtz instability of 
a liquid film adjacent to a compressible gas and under the influence of a body 
force directed either away from or towards the liquid has been presented by 
Nayfeh 8t Saric (1971). Drazin (1970) has analysed the nonlinear Kelvin- 
Helmholtz instability of two parallel horizontal streams of inviscid incompres- 
sible fluid. Miles (1957, 1959, 1962) considered the effect of the critical layer 
present in the parallel incompressible shear flow of gas over a slightly viscous 
liquid performing two-dimensional wave motions. Benjamin (1 959) extended the 
analysis of Miles (1  957) by including the effect of the gas viscosity, and deter- 
mined the pressure and shear stresses exerted by an incompressible stream on 
a rigid wavy wall. Craik (1966) used Benjamin’s results to analyse the effect of the 
shear and pressure perturbations exerted by an incompressible gas stream on the 
stability of a liquid film. 

In  the present investigation, the stability of the gas-liquid interface of a sonic 
gas jet submerged in an infinite mass of liquid under the action of a pressure 
perturbation, liquid viscosity and surface tension is considered. 

The presence of a high-speed flow of compressible gas over a liquid layer causes 
perturbations in interfacial stresses owing to the appearance of waves, and the 
Kelvin-Helmholtz instability is predominantly governed by the pressure per- 
turbation exerted by the gas on the interface (Chang & Russell 1965). The 
analyses (Chang & Russell 1965; Nachsheim 1970; Nayfeh & Saric 1971) per- 
formed to date, at  least to first order, used a linearized compressible flow theory 
neglecting the transient motion of the gas for subsonic and supersonic gas flows, 
and cannot be extended to include transonic gas flow, for their results would 
predict an infinite pressure perturbation a t  a Mach number Mo = 1.  This limita- 
tion is due to the neglect of terms due to the transient motion of the gas and the 
nonlinear term in the governing equation due to slow accumulation of disturb- 
ances near Mo N 1 in the basic steady flow; the necessity for retaining the latter 
term will depend on the degree of unsteadiness. The neglect of transient gas 
motion in the case of subsonic and supersonic gas flows is a perfectly valid assump- 
tion provided, of course, that the wave veIocity of the disturbance at  the 
gas-liquid interface is much less than the gas velocity. Such an assumption 
becomes invalid for transonic or sonic flow, even for relatively slow oscillations 
of the disturbed gas-liquid interface. It may further be emphasized that for very 
slow oscillations the small perturbation equation for transonic flow may be non- 
linear. If, however, there is a high enough rate of time variation, i.e. the unsteadi- 
ness introduced into the flow by oscillation of the gas-liquid interface is 
sufficiently large, the nonlinear disturbance accumulation does not have time to 
develop and a linearized treatment that includes the transient motion becomes 
justified. The present analysis includes an order-of-magnitude analysis of the 
full governing equations for the gas flow in an axisymmetric sonic gas jet sub- 
merged in a liquid with disturbances at  the gas-liquid interface, and obtains the 
condition under which a linearized treatment is applicable. The method of 
linearizing the equations of motion is an extension of a method originally 
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developed for flow past a two-dimensional oscillating wing by Lin, Reissner & 
Tsien (1948). It is demonstrated in this paper that sonic-gas-jet/liquid systems 
likely to be of physical interest satisfy this condition. 

The basic difference in the destabilizing effect of the three regimes of gas flow, 
viz. subsonic (including incompressible), supersonic and sonic, on liquid layers is 
in the manner in which a pressure perturbation acts on the interface. The pressure 
perturbation exerted on the interface by subsonic gas flowing over a liquid 
surface is out of phase with the surface amplitude by 180", and thus acts on the 
interface by pushing at the troughs of the wave and sucking at the crests (Nayfeh 
& Saric 1971). For supersonic gas flowing over the liquid surface, the pressure 
perturbation is in phase with the wave slope (Nayfeh & Saric 1971; Liepmann & 
Roshko 1957, p. 313); for sonic flow, however, the pressure perturbation is out of 
phase with the wave amplitude by an angle which varies with flow and instability 
parameters. For supersonic flow, the energy is transferred to the liquid layer 
predominantly through wave drag (Nayfeh & Saric 1971); for sonic flow, 
depending upon the value of the phase angle, energy may be transferred to the 
liquid layer by both the 'lift ' and drag components of the pressure perturbation. 
At low liquid viscosities, the behaviour of the disturbed liquid layer a t  the inter- 
face for sonic flow is somewhat similar to that for subsonic flow in that each has 
a definite cut-off wavenumber above which the disturbance on the liquid layer is 
stable. At high liquid viscosities, the behaviour of the disturbed liquid layer for 
sonic flow is unlike that for subsonic and supersonic gas flows in that the liquid 
layer is always unstable; in subsonic flow, the cut-off wavenumber is unaltered 
by viscosity, and for supersonic flow the liquid layer is always stable. 

The phase of the gas-pressure perturbation (as predicted by potential flow 
theory) with respect to disturbance waves a t  the gas-liquid interface can be 
altered by the Mach-number profile, as was demonstrated by Inger (1971, 1972). 
I n  his study of steady disturbances to the mean flow in a compressible boundary 
layer flowing past a slightly wave-swept wall, he found that, for a supersonic 
external flow, the Mach-number profile in the boundary layer has a marked effect 
on the phase angle of the wall pressure. However, his analysis showed no effect of 
the Mach-number profile on the phase of the wall pressure with respect to the 
wave amplitude for subsonic and transonic flows outside the boundary layer. 
For unsteady disturbances having a finite wave velocity in a boundary layer 
(compressible or incompressible) over a wavy surface, the phase of the wall 
pressure can also be shifted by the presence of a critical layer near the liquid layer. 
The effect of the critical layer in shifting the phase of the pressure perturbation 
exerted by the gas phase on the liquid layer a t  the gas-liquid interface for sub- 
sonic and supersonic flows outside the boundary layer is expected to be small, 
because the wave velocity is very small in comparison with the uniform gas 
velocity outside the boundary layer and the critical layer lies almost at the 
gas-liquid interface. In  fact, the motion of the gas phase in these boundary layers 
is well represented by a quasi-steady approximation with a negligible contribu- 
tion from the transient motion (see, for example, Bordner, Nayfeh & Saric 1973). 
Although Miles (1957,1959,1962) treated the case of an incompressible boundary 
layer, there does not appear to be any analysis available in the literature that 
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FIGURE I. Description of the co-ordinate system. 

treats the effect of the critical layer for the case of unsteady disturbances in a 
compressible boundary layer. The analysis presented here will, however, provide 
the outer matching condition for the distribution of the pressure perturbation in 
the boundary layer for the case of unsteady transonic flow outside the boundary 
layer. 

2. Governing equations for gas jet 
The physical problem considered is shown in figure 1.  The gas jet issues from 

an orifice of radius a. The flow at the orifice is assumed uniform, and for a sonic 
jet has a velocity equal to the sonic velocity at  the throat conditions. The 
expansion of the mean jet boundary is not considered, in anticipation of the 
short-wave approximation to be employed in the subsequent analysis, which 
reduces the axisymmetric two-dimensional gas-liquid system to a two-dimen- 
sional planar configuration. Therefore, it is assumed that gas jet has a constant 
mean radius equal to the orifice radius. Furthermore, we assume a continuous, 
frictionless (also neglecting the thin shear layer at  the jet boundary), non-heat- 
conducting gas flow free from shock waves of finite strength and body forces. 
The basis for neglecting the shear layer at the jet boundary is that the pressure 
force, which dominates at  the liquid surface compared with the friction force, is 
not affected by the presence of a shear layer (Chang & Russell 1965). It is also 
assumed that this shear layer does not significantly alter the phase of the gas- 
pressure perturbation with respect t o  the disturbance wave. The absence of body 
forces ensures that the stagnation enthalpy is constant; the assumption of a 
frictionless non-heat-conducting gas flow free from shock waves of finite strength 
ensures that the flow is isentropic, and we may assume t,he existence of a velocity 
potential q5g which satisfies the nonlinear wave equation 
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where t is the time and c,  the sonic velocity a t  a point in the jet, is given by 

Here U, and co are the velocities of the gas and sound at  the orifice, i.e. at x = 0, 
respect>ively (for a sonic gas jet U, = co) ,  and y is the ratio of specific heats. These 
governing equations are very general and are applicable to all regimes of axi- 
symmetric compressible potential gas flow; in the next section these equations 
will be linearized and specialized to each of the three regimes of gas flow, viz. 
subsonic, sonic and supersonic. The solutions of (2.1) and (2.2) must satisfy the 
following kinematic boundary condition a t  the gas-liquid interface : 

where 7 is the displacement of the gas-liquid interface from the mean jet radius. 

3. Linearization of equations of motion for the gas phase 
Let us introduce the following dimensionless variables : 

x* = x/h,  y* = (a - r )  S/a, t* = w*(tU,/h), (3.1) 

(3.2) 
(3.3) 

The dimensionless parameters c$, E ,  w* and 6 are to be defined in a given neigh- 
bourhood in such a way that #, 7" and their derivatives with respect to any of 
the dimensionless independent variables are O( 1). In  particular, 

as well as a dimensionless perturbation potential # and displacement 7" such that 

#,(T, x ,  t )  = u,x + €$$ U,h#(T*, x*, t*), 
~(z, t )  = Eay*(x*, t*). 

0" = \ap/2nri, ,  (3.4) 

where a is the (complex) angular frequency and A the wavelength of the disturb- 
ance. If a linearized solution to the nonlinear equations is desired for short waves, 
i.e. for h/a < 1, then we expand #, in a power series in h/a, i.e. e+ = h/a, and 
retain only the leading term in the expansion. 

In  terms of the above non-dimensional variables, the velocity components and 
the velocity of sound are 

The pressure coefficient is 



and the boundary condition (2.3) becomes 

-6qh/a)2$,* = e[w*y;+g8(1 +e4$,*)1. (3.10) 

In  the above set of equations, Po is the pressure a t  any point in the gas jet, while 
Po, pg and Mo are the pressure, density and Mach number of the gas at  the orifice. 
When specialized to a sonic jet, Po and po denote the critical values, i.e. values 
at  Mo = 1.  

The theory of small perturbations requires that the deviations of the velocity 
components and pressure from the reference conditions be small. Thus, from 
(3.5)-(3.8), we obtain the following conditions: 

< I ,  e4(6A/a) < 1, e,Mi < 1, e$M;u* < 1, (e4Jlo6h/a)2 << 1. (3.11) 

With the use of the first of the above conditions, (3.10) simplifies to 

and (3.9) to 

+ 2W*e$Mi$y8$1/8t’+ (7- 1)&Ii(a/6h)2e$w*$ *$,i,*. (3.13) 

In  the above equations, the orders of magnitude of the different terms may not 
necessarily be the same. However, all terms in (3.9) and (3.10) that are neglected 
are definitely small compared with terms retained in (3.12) and (3.13). Any 
further simplification depends on the order of magnitude of the coefficients of 
the retained terms. 

Equation (3.12) implies that the larger of the two coefficients EW* and e must 
be of order 6~$(h/a)~; the particular choice depends on whether 

(i) w* < 1, (ii) w* = O ( i ) ,  (iii) w* 1. 

In cases (i) and (ii) 6€$(h/U)2 = e, (3.14) 

and in case (iii) 6€$(A/U)2 = ew*. (3.15) 

However, as will be seen subsequently, only cases (i) and (ii) are of physical 
relevance to the present problem. Physically, case (i) implies that the wave 
velocity is much less than the gas velocity and case (ii) implies that the wave 
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velocity is of the same order as the gas velocity. Case (iii), which corresponds to 
highly transient motion, will not be considered here. 

For case (i) with Jl0 = 1, (3.13) further simplifies to 

where in (3.13) we have set 

1 62 (a)2€+ 2 = 1, w* = O(€$) < 1.  

(3.16) 

(3.17a) 

For short waves, we obtain from (3.14) and ( 3 . 1 7 ~ )  

E$ = h/a ,  6 = (a/h)B, E = (h/a)%, w* = O(h/a) < 1 .  (3.17b) 

Clearly, from the second of conditions (3.17b)) it follows that 6 B 1, and conse- 
quently with q5y* = O( 1)  and y" = O ( l ) ,  (3.16) reduces to the equation for a two- 
dimensional planar gas flow. These arguments also apply to other short-wave 
approximations for the various cases discussed below; therefore, for the sake of 
conciseness, they will not be repeated for each and every case considered in the 
following analysis. However, if w* 9 E$ but w* < 1 [case (i)], it is clear that the 
transient motion will dominate and the nonlinear term in (3.16) becomes of 
higher order. Then (3.13) simplifies further to 

where in (3.13) the choice for the coefficients now becomes 

(3.18) 

(3.19a) 

The above conditions when specialized to short waves become 

E$ = h/a, 6 = w*h(a/h), E = w*h(h/a)2, w* B h/a, w* < 1. (3.19b) 

For subsonic (No < 1)  and supersonic (&Io > 1) flows in case (i), (3.13) simplifies to  

(3.20) 

where in (3.13) we have set 

or, for short waves, 

E$ = h/a < 11-Mg21, 6 = IMi- 1[B(a/h), 
E = (h/a)21Mo-11+, w* < I1-M;Zj. (3.21b) 

It is clear from the first of conditions (3.21 b )  that for short waves, i.e. h/a < 1, 
the condition for the applicability of the linearized equation (3.20) for subsonic 
and supersonic (not including JIO+ 1) gas jets can easily be satisfied. 

For case (i), i.e. w* < 1, with the use of (3.14), equations (3.12) and (3.8) for all 
three regimes (subsonic, transonic and supersonic) simplify to, respectively, 

-& = g., c;, = -2€&5,.. (3.22), (3.23) 
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From the foregoing analysis, it is clear that, so long as w* < 1 (i.e. the wave 
velocity is much less than the gas velocity), the transient motion of the gas can 
be neglected for subsonic and supersonic flows; however, for sonic flow, the 
transient motion of the gas is dominant to the extent that if w* = O(ep = h/a) 
the contribution of transient variation of the axial component of motion becomes 
of the same order as the nonlinear disturbance accumulation term. However, if 
w* % e+ = h/a and still w* < 1, the nonlinear disturbance accumulation does not 
have time to develop; the above-mentioned transient component of motion of 
the gas dominates and the governing equation becomes linear. 

It is self-evident from the above analysis and discussion that for case (ii) the 
transient motion of the gas will predominat'e. As a result, (3.13), (3.12) and (3.8) 
for 3l0 = 1 simplify to, respectively, 

1 &* = w*&* + 2$z*t", 
h*lJ* - S( 1 - y*/S) 

* - $?,* = w * g  + r2*, 
CD = - 2S$(W*$,. 4- $,*), 

where in (3.13) we have made the choice 

w* 2 
w* = O(l) ,  -@ (;) = 1, w* %€+. 

(3.24) 

(3.25) 

(3.26) 

(3.2 7 a)  

I n  obtaining (3.25) and (3.26), conditions (3.27a) have been used. For short 
waves, conditions ( 3 . 2 7 ~ )  become 

a* = 0(1), W *  > S+ = h/a, S = w4':4(a/h), 8 = ~ * $ ( h / ~ c ) ~ .  (3.373) 

The corresponding governing equations for case (ii) for subsonic and super- 
sonic flows can easily be deduced. However, almost all gas-liquid systems of 
physical interest satisfy conditions (3.31). The analysis of the stability problem 
associated with subsonic and supersonic gas flows adjacent to a plane liquid 
layer for case (i) has already been presented in Chang & Russell (1965) and 
Nayfeh & Saric (1971); therefore, in what follows we restrict our attention to 
sonic flow only. It will be demonstrated in the subsequent analysis that almost 
all sonic-gas-jetlliquid systems of physical interest satisfy either the conditions 
(3.193) or (3.273) for application of the short-wave approximation, depending 
on the values of the flow parameters. Since case (ii) embraces case (i), and the 
planar form of (3.18), (3.22) and (3.23) can be deduced from the planar form of 
(3.24)-(3.26) by letting w* < 1, we shall therefore, in the present analysis, use 
the following dimensional form of these latter equations reduced to a planar 
gas flow by use of the third of conditions (3.273): 

(3.28) 

(3.29) 

(3.30) 
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4. Equations of motion for the liquid phase 
The motion of the liquid surrounding the gas jet is assumed to be described by 

the following linearized equations consistent with the short-wave approximation 
discussed previously : 

aupx + avlar = 0, (4.1) 

(4.3) 

where u and v are the axial and radial components of the induced motion of the 
liquid, respectively, P is the pressure a t  any point in the liquid, v is the kinematic 
viscosity of the liquid and p is its density. 

The linearized kinematic boundary condition a t  the gas-liquid interface that 
solutions to the above equations must satisfy is 

= ariat. (4.4) 

I n  addition, these solutions must also satisfy the following dynamic boundary 
conditions. With the neglect of the shear stress exerted by the gas on the gas- 
liquid interface, the continuity of tangential stresses a t  the interface requires that 

p(aupr + aviax) = 0, (4.5) 

where ,u is the dynamic viscosity of the liquid. The continuity of normal stresses 
a t  the gas-liquid interface requires that 

aV 0- a2p 
-P+2,u-+Pg=--(T- 

ar a ax2’ 

where (T is the surface tension. The above equation is consistent with the short- 
wave approximation discussed previously. 

Equations (4.2) and (4.3) can be simplified by use of a stream function 
@(Y, x, t )  defined by 

u = a$/ar, v = -a@lax, (4.7) 

which follows directly from the continuity equation (4.1). The substitution of 
the above into (4.2) and (4.3) yields after eliminating the pressure P between the 
resulting equations 

(v2$ - u-1 aiat) v2$ = 0, 

where V2 = a2/ax2 + a2/ar2. Since the operators V2 - u- I  a/at and V2 commute, 
the function $ can be separated into two parts: @l, which satisfies 

VZ@, = 0, 

v2@, - Y-1 a@2iat = 0. and (r2, which satisfies 
(4.9) 

(4.10) 

The solutions of (4.9) and (4.10) can then be combined to give the general 
solution of (4.8) as 

Ilr = Ilrl+Ilr2.  (4.11) 
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Substituting (4.7) and (4.11) into (4.2) and (4.3), and using (4.9) and (4.10), we 
obtain 

5. Solutions 

is set into motion according to the expression 
As is usual in linear stability analysis, we assume that the gas-liquid interface 

~ ( x ,  t )  = rOeiK"+at, (5.1) 

where K is the wavenumber and q0 is the amplitude. In  view of (5.1), the solution 
of (3.28) that vanishes at  the jet axis and satisfies boundary condition (3.29) a t  
the gas-liquid interface is 

The solutions of (4.9) and (4.10) which vanish at  infinity and when combined in 
the manner of (4.11) satisfy (4.4) and (4.5) a t  the gas-liquid interface are, 
respectively, 

We have introduced in (5.2) 

and in (5.3) 1' = K2 + a/V. 

The use of (5.2) in (3.30) yields 

1 sin (K,r) 

Y A 5  = $ - - p g u i  = - p p , ( ~ + i ~ q ) '  KcCOS ( K , U )  7. 

(5.3 a )  

(5.3 b )  

Equation (5.6) for the gas-pressure perturbation can be simplified considerably 
when applied at  r = a: with a expressed as 

a = ar-zai (5.7) 

(where a, is the time amplification factor and a( is the angular frequency of the 
disturbance), we obtain from (5.4) 

( 5 . 8 ~ )  K, = Km - %Kc., 

Clearly, - I m  (K,) = K,.. > Re (K,) = K,, > 0; 
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further, if al~,I $ 1, then 
aKCi B 1. (5.9) 

Substituting (5.8) into the expressions 

eiKea + e - i K c a  eir,a - e-irca 
, s in(~ ,a )  = (5.10) 

and using (5.9)) we obtain the following simple asymptotic formulae for COS(K,U) 

and sin ( Kc a )  : 
(5.11) 

2 2i 
COS (K,U) = 

cos ( K ~ U )  N + eiKca, sin (K ,a )  - (%)-I eiKca. 

Using them in (5.6) at r = a yields 

ApY = pg(a + iKUi) Y / K ~ .  ( 5 . 1 2 )  

To obtain the phase angle of the pressure perturbation acting at  t'he gas-liquid 
interface, we take the real part of ( 5 . 1 2 ) .  Use of (5.7) and (5.8n) then yields 

Re[AP,] = Re[p,(a+i~U,)~r/K,] 

= (p, ~ r i K 2 / / K c 1 2 )  [(W,K,i- WiK,)'+ (W,K, , fU~iK, i )2]B 

x T~ cos [KX - a,t - (8. - 6)]  e a y t ,  ( 5 . 1 3 )  

(Kc.2 = K&+K$.  (5.15) 

Equation (5.13) shows that at  the gas-liquid interface the pressure perturbation 
is out of phase with the wave amplitude by an angle 4. - 6 ,  where the angle 8 is 
given by 

8 = tan-l[ ( W, itci - wi K ~ ) / (  W, K,, + uji K , ~ ) ] .  ( 5 . 1 6 ~ )  

For case (i), i.e. with the use of I ~ ~ / K U ,  < 1 in the expressions (5.8 b,  c )  for K, and 
K , ~  and in the expressions (5.14) for w, and wi, we obtain 

8 = tan-1 ([(a: + a:)& + ai]4/[(a; +a:)& - 4 3 ) .  (5 .16b)  

It may be noted that 8 is a measure of the relative effectiveness of the wave- 
drag component as compared with the 'lift' component of the pressure perturba- 
tion. For example, with 8 = go", the pressure perturbation is in phase with the 
wave amplitude; as a result, energy is transferred to the liquid layer at  the gas- 
liquid interface predominantly through the lift component, as in subsonic gas 
flow. With 8 = 0, the pressure perturbation is in antiphase with the wave slope; 
as a result, the dominant mode of energy transfer is through wave drag, as in 
supersonic gas flow. 

The expression for the pressure P i n  the liquid phase is obtained by substituting 
( 5 . 3 ~ )  into ( 4 . 1 2 )  or ( 4 . 1 3 )  and integrating; the result is 

(5.17) 
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where C is a constant and is evaluated by applying (4.6) a t  x = 0 (i.e. at  the 
location where the disturbance originates; at x = 0, the deviation of the gas- 
liquid interface is zero). Thus, 

(5.18) C = y-Ipg Ug - c/a.  

Finally, with the constant C given by the above expression, and by substitution 
of (5.17), (5.12), (5.3) and (5.1) into (4.6), we obtain at  r = a 

(5.19) 

6. Solution of the dispersion equation 
For ease in obtaining roots, (5.19) is separated into real and imaginary parts 

by substituting for 1, a and K~ from (5.5), (5.7) and (5.8),  respectively. The 
resultant equations in dimensionless form are 

(6.3a) 

(6.3b) 

(6.4b) 

(6.5 a) 

The reason for the above choice for the combination of flow parameters in order 
to make a,, ai and K dimensionless will be made clear in the subsequent analysis. 

The solution of the above equations consists of obtaining 
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where, for a given value of I?/, (6.6b) shows that ru is only a function of the 
density ratio pJp. Thus, in the solution of (6.1) for a,* and a: as functions of K * ,  

the parameters are rP and pJp. However, prior to obtaining such a solution it 
will be very instructive to obtain the general form of the solutions; this consists 
of seeking solutions of (6.1) for low and high values of the liquid viscosity with 
and without the limitation imposed by the condition of case (i), and searching for 
maxima of a,* (if they exist) with respect to K* for various values of r,L and r, 
or the density ratio. 

6.1. Approximation for a low viscosity liquid 

A low viscosity liquid is defined as one for which the following condition holds: 

la1 9 V K ~ ,  i.e. rPK*2/la*l 6 1. (6.8) 

The use of the above condition in (6.1) yields 

- a,*% + ( r l l K * 3 / 1 K z 1 2 )  (W,*K$-WTK,*,) = r , L K * 3 ,  (6.9) 
2 a ~ C t ~ - ( r ~ l K * 3 / l K ~ / 2 )  ( W , * K z + W : K z )  = 0. (6.10) 

To show that the above equations are indeed independent of the viscosity of 
liquid, we make the substitutions 

&r = a,p-0.2, P &. L = a*r-02 L / L '  $ = K*ro.2 P (6.11) 

in (6.9) and (6.10), obtaining 

&; - q + ( 2 3 / p c y )  (ar cCi - ai 2,) = $3, (6.12 a) 

2&i--T2{[$-&i($') $3 0.4 ] & + Z @ )  8, 0.4 [l-e) 0 . 4 4  ?IT) eci = 0 ,  (6.12b) I4 
where 

0.4 " 
(6.1 3 a) 

(6.13b) 

(6.14b) 
(6.14 c)  

The above equations are clearly independent of the liquid viscosity. Note that, 
in obtaining (6.12b) from (6.10), the root &, = 0 of (6.10) has been excluded. 
Thus, the stable behaviour of the gas-liquid interface is extracted by letting 
2, = 0 in ( 6 . 1 2 ~ ) ;  the resulting governing equation is 
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Equations (6.12)-(6.14) clearly show that the solution of (6.12) for kr and as 
functions of iZ depends only on the parameter p f f / p ,  i.e. 

&r = &p(Q,pg/p)> &i 5 &i(G,pg/p)* (6.16) 

Among the above solutions for various values of the parameter p,/p, the one 
with pf f /p-+ 0 corresponds to the case of low wave velocity, namely, case (i), as 
will be shown below. The condition for low wave velocity is 

(6.17) 

The application of the above condition to (6.12) yields for an unstable gas-liquid 
interface 

( 6 . 1 8 ~ )  

(6.18b) 

For a stable gas-liquid interface, we obtain from (6.15) 

(2; + +i2(2pi)4 = 23. (6.19) 

Thus, for the low wave velocities (6.13) and (6.15) become independent of the 
density-ratio parameter. 

The solutions of (6.18b) and (6.19) give the following values for the neutrally 
stable (cut-off) wavenumber and the corresponding frequency: 

Q = 5  4'  a. A 2 = 5 8' (6.20) 

For a stable mode of disturbance (5.16b) gives 0 = 90") i.e. the pressure perturba- 
tion given by (5.13) becomes in phase with the wave amplitude. As a result, the 
local wave-drag component of the pressure perturbation becomes small in 
comparison with the lift component. 

The solution of (6.18) corresponding to the mode of maximum instability is 
obtained by differentiating (6.18) with respect to Q,  setting d&r/di2 = 0 and 
eliminating d&&r2 between the resulting equations; the third equation thus 
obtained is solved simultaneously with (6.1 8), yielding 

* armcr f. aimcr p 0.2 
2: 0.357, kirn = - (-) N 0.329, (6.21a) 

P, u; Po 
a r m  = -( ) 

Pff u; Pff 

(6.21 b) 

where the subscript m has been added to denote the values of ;Z and &i a t  the 
maximum value dnIL of the amplification factor of the waves. These equations 
show that the surface tension acts to reduce the frequency and rate of amplifica- 
tion a t  maximum instability according to an inverse law for cr. With the above 
solution, conditions (6.8) and (6.17) become, respectively, 

r;4 < 1, (P,/P)O.* < 1, (6.22 a, b )  
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FIGURE 2. The dependence of the non-dimensional amplification factor and frequency on 
the non-dimensional wavenumber and on the density ratio p,/p for low viscosity liquids. 

and the condition of linearization, namely, 

(6.23 a) 

or We =- 2aP,u: 9 26 (t)o'2 (6.23b) 
becomes u 9 13 (E)"" Pg u,2 0- 

where We is the Weber number based on the nozzle diameter. The above condition 
clearly shows that the linearization of the wave equation becomes more valid as 
the gas density or the stagnation pressure increases. In  addition, the conditions 
necessary for employing the short-wave approximation, viz., 

KU 9 1,  llla 9 1, ( K J U  B 1, ( 6 . 2 4 ~ )  

must also be satisfied. From consideration of (5.4), (5.5) and condition (6.17) it 
is clear that only the third of the above inequalities needs to be satisfied. From 
(5.8) and (6.21) and condition (6.17), the third of inequalities ( 6 . 2 4 ~ )  becomes 

a 9 O-/pg U:. (6.24b) 

From comparison of condition (6.23 b) with condition (6.24 b) ,  it is evident that 
the former is more stringent than the latter; therefore, condition (6.24b) becomes 
redundant. 

The solution of (6.18) as a function of wavenumber is obtained below as a 
special case of a more general solution as indicated by the functional form (6.16). 
For this purpose, (6.12) are solved numerically, varying pg/p from 0 to 1.0 to 
cover a very wide range of stagnation pressures or gas-liquid systems. Figure 2 
displays such solutions of (6.12). It can be seen that in the inviscid case there 
exists one neutrally stable (or cut-off) wavenumber, which varies with the density 
ratio or wave velocity. At or near the cut-off wavenumber, the rate of amplifica- 
tion decays very rapidly owing to a very rapid decrease in wave drag (i.e. 8 
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FIGURE 3. Angle 19 as a function of the non-dimensional wavenumber with the density ratio 
pg/p as a parameter for low viscosity liquids. 

approaching 90”; see figure 3), and the disturbance above the cut-off wavenumber 
consists of pure oscillatory motion with constant amplitude. Figure 3, which 
displays 8 as a function of wavenumber, shows that at  low density ratios and for 
values of the wavenumber below the value at  maximum instability, the energy 
is transferred to the liquid layer at  the interface owing to both wave drag and 
‘lift ’; however, with increasing density ratio, the wave-drag component of the 
pressure perturbation increases in comparison with the ‘lift ’ component and 
becomes most effective (i.e. 0 = 0) at pg/p v 0.75. Further, at  maximum insta- 
bility the wave-drag component of the pressure perturbation increases mono- 
tonically in comparison with the ‘lift’ component with increasing density ratio, 
as can be seen in figure 3. The manner in which the cut-off wavenumber and 
wavenumber at  maximum instability vary with density ratio can be discerned 
from figure 2 .  It can be seen that the cut-off wavenumber and the wavenumber of 
the maximum instability decrease with increasing density ratio, i.e. the modes of 
stability and maximum instability shift towards lower wavenumbers with 
increasing density ratios. 

For supersonic gas flow (Chang & Russell 1965), the dominant mode of energy 
transfer from the gas phase to the liquid layer a t  the gas-liquid interface is by 
means of wave drag; however, unlike the case of sonic gas flow, for supersonic gas 
flow and low viscosity liquids there does not exist any cut-off wavenumber, and 
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the condition at the gas-liquid interface is always one of instability in spite of 
the stabilizing effect of surface tension. However, with respect to the density 
ratio, the rate of amplification in the case of supersonic flow (Chang & Russell 
1965) displays a behaviour similar to that in the sonic case [see (6.21)] in the 
vicinity of low wave velocities, i.e. decreases with decreasing density ratio, 
becoming zero in the limit of pQ/p = 0. 

With subsonic gas flow (Nayfeh & Saric 1971) over a liquid surface, energy is 
imparted to the liquid layer a t  the gas-liquid interface by the pressure perturba- 
tion in the gas phase, which pushes out at  the wave troughs and sucks in at  the 
wave crests; as in the sonic case, there exists a cut-off wavenumber owing to the 
stabilizing effect of surface tension. Above the cut-off wavenumber, the disturb- 
ance is stable and reduces to a pure oscillatory motion with constant amplitude. 
In  the unstable mode of disturbance, subsonic flow, like sonic flow, displays a 
maximum with respect to wavenumber; in contrast to the sonic case the 
frequency of the disturbance motion is always zero and the cut-off wavenumber 
is independent of the density ratio. As for sonic and supersonic gas flows, in 
subsonic flow (Chang & Russell 1965) at low wave velocities the rate of amplifica- 
tion also decreases with decreasing density ratio. 

6.2. Approximat ion  for a high viscosity liquid 

A highly viscous liquid is characterized by the condition 

[a\ < V K ~ ,  i.e. l a * l / I ' , K * 2  < I. (6.25) 

The application of this condition to (6.1) yields 

-22a :+ (K* / IK : ( ' )  ( ' 2U:KZ-WZKZ)  = K* ( 6 . 2 6 ~ )  

and - 2 a f - ( K * / I K : l ' )  (W:Kc* ,+WTKz)  = 0. (6.266) 

The free parameter that must be varied in order to obtain a solution of the above 
equations is I?,, i.e. the functional form of the solution is 

a: = a:(K*, r,), a: = a;(.*, r,). (6.27) 

In  analogy with the case of low viscosity liquids, I?,+ 0 corresponds to the case 
of low wave velocity. To appreciate better the nature of the general solution in 
the form given in (6.27),  we study below the case of low wave velocity. 

The condition (6.17) for the approximation of low wave velocity in terms of 
the non-dimensional variables defined by (6.2) becomes 

r,ia*p* < 1. (6.28) 

The use of this condition in (6.36) yields 

and 

( 6 . 2 9 ~ )  

(6.29 b )  

Clearly the above equations are independent of I?,. From them it can be seen 
that there does not exist any stable mode of disturbance. The solution corre- 

34 F L M  67 
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FIGURE 4. The variation of the non-dimensional amplification factor and frequency as 
functions of the non-dimensional wavenumber with rw as a parameter for high viscosity 
liquids. 

sponding to the mode of maximum instability is obtained in a way similar to that 
for low viscosity liquids satisfying the condition of low wave velocity and is 
given by 

(6.30 b) 

It is the above set of equations that provided the motivation for employing the 
above combination of flow parameters for the purpose of non-dimensionalizing 
q, ai and  in the manner indicated by (6.2). The above solution shows that the 
viscosity and surface tension act to reduce the frequency and the rate of amplifica- 
tion a t  the maximum instability according to an inverse-square-root law for ~ u ( T .  

With the solution given by (6.30) for a:, a: and K* a t  maximum instability, 
the conditions (6.25), (6.38) and (6.33 a) become, respectively, 

q%- 1, (6.31) 

rw < 1 or (pg/p)04 < r;4, (6.32) 

rw 9 h/a or a 9 18v/(F$p, Ug) or We 9 361I';. (6.33) 

Condition (6.33) clearly shows that, as the liquid viscosity increases, the condition 
for linearization is satisfied with less margin (see (6.6) for definition of rJ. For 
the solution given by (6.30), once again, it can easily be shown that the third of 
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FIGURE 5 .  The variation of the angle 0 as a function of the non-dimensional 
wavenumber with I?, as a parameter for high viscosity liquids. 

the conditions ( 6 . 2 4 ~ )  is less stringent than condition (6.33) and therefore in 
the case of high viscosity Iiquicls also is no longer a necessary condition. 

The solution of (6.36) as a function of wavenumber in the form of (6.27) with 
FW as a parameter is displayed in figures 4 and 5. Figure 4 shows that in highly 
viscous liquids, unlike low viscosity liquids, there does not exist any cut-off 
wavenumber, and the physical condition of the liquid layer a t  the interface is 
always one of instabiIity owing to the destablizing effect of the 'lift' and wave- 
drag components of the pressure perturbation on the liquid layer. As can be seen 
from figure 5, which displays the angle 8 as a function of the wavenumber K* 

with I?, as a parameter, 8, unlike the case for low viscosity liquids, approaches 
90" (i.e. the pressure perturbation becomes in phase with the wave amplitude) 
only asymptotically at large values of K*. In contrast to sonic gas ff ow, in subsonic 
gas flow (Chang & Russell 1965), the cut-off wavenumber is unaltered by the 
presence of viscosity, whereas for supersonic flow (Chang & Russell 1965) the 
liquid layer in the case of highly viscous liquids is always stable. Distributions 
of the amplification factor and the frequency as a function of wavenumber shown 
in figure 4 possess maxima, but these maxima occur a t  different wavenumbers. 
By comparing the plot of the amplification factor given in figure 4 with that 
given in figure 2 for low viscosity liquids, it can be seen that the effect of I?, on the 
amplification factor near maximum instability is somewhat analogous to the 

34-2 
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FIGURE 6. The variation of the non-dimensional amplification factor as a function of'the 
non-dimensional wavenumber with rp and the density ratio p,/p as parameters corre- 
sponding to the general solution of the dispersion equation. - , r l A  - - 104; ---, 
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P P 

effect of the density ratio in case of low viscosity liquids. It may be pointed out 
that, although we have considered a very wide range of values of I?, for the case 
of highly viscous liquids, in practice it is not possible to realize these values for 
any physical system involving high viscosity liquids. For most physical systems 
values of I?, lie well below I?, = 0-1; this, in turn, implies that the approximation 
of low wave velocity may be a valid approximation for most highly viscous 
liquids. 

6.3. General solution 

The general solution of (6.1) obtained numerically in the form indicated by the 
functions (6.7) is presented in figures 6 and 7.  The value of was varied over 
a wide range; however, for the sake of clarity in the graphical presentation, plots 
are shown only for three values of Ffl, corresponding, respectively, to very high, 
very low and intermediate values of FP. As discussed previously, for a given value 
of Pa, the parameter I?, depends only on the density ratio p,/p; therefore, in these 
plots the density ratio p,/p instead of I', is shown as a parameter. For very high 
values of Fa,  e.g. I?,l = lo4, the distributions of the amplification factor and 
frequency as functions of K* given in figures 6 and 7, respectively, are very similar 
to the corresponding distributions shown in figure 4 for high viscosity liquids. 
The reason for this similarity can be seen from the plot of I ? , K * 2 / l a *  I as a function 
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FIGURE 7. The variation of the non-dimensional frequency as a function of the non- 
dimensional wavenumber with rp and the density ratio p,/p as parameters corresponding 
to the general solution of the dispersion equation. Curves as in figure 6. 

Of K* in figure 8; this figure shows that, for the value of rr given above, r,K*2/loI* I 
has a finite value which increases rapidly as K* increases and the condition for 
the approximation for a high viscosity liquid is satisfied with an increasing 
margin. Furthermore, it can be seen from figure 6 that, like the case for a high 
value of r,, there does not exist any cut-off wavenumber even at  intermediate 
values of rp, e.g. I'p = 1.0, owing to the destablizing action of the 'lift' and wave- 
drag components of the pressure perturbation. As can be seen from figure 9, 
which shows the angle 0 as a function of K* with rp  and the density ratio as 
parameters, 0 approaches 90" asymptotically at  large values of K* for high and 
moderate values of rp. Figures 6 and 7 further show that, for high values of the 
wavenumber, the behaviour of bot,h the frequency and amplification factor for 
intermediate values of Fa approaches that for high values of rp ;  the explanation 
for this follows readily by reference to figure 8. For low values of rp, e.g. 
F a  = 5 x 10-6, the distributions of a,* and a' behave very similarly to those a t  
very low liquid viscosities so long as the condition rpK*2/1a*l < 1 (see figure 8) 
is satisfied. This condition is satisfied, however, with a sufficiently wide margin 
for values of the wavenumber below those which correspond to maximum 
instability, and the margin decreases very rapidly as the wavenumber increases 
further, i.e. the effect of the viscosity of the liquid becomes more pronounced 
with increasing wavenumber. Consequently, the distribution of a,* does not show 
a well-defined cut-off wavenumber as in the approximation for a low viscosity 
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FIGURE 8. The variation of l ?pK*z / Ia* [  (parameter for liquid-viscosity condition) as a 
function of the non-dimensional wavenumber with and the density ratio p,/p as 
parameters corresponding to the general solution of the dispersion equation. Curves as 
in figure 6. 

liquid, although the rapid fall-off in the distribution of a,* and rapid increase in 
the angle 8, i.e. rapid decrease in the wave-drag component of the pressure 
perturbation (see figures 6 and 9) beyond the maximum instability as seen 
previously in figures 2 and 3 for low viscosity liquids owing to the stabilizing 
effect of surface tension, are also evident at  very low values of I?,. 

7. Illustration of conditions for validity of various approximations 
In  order to illustrate the conditions for the approximations for low and high 

viscosity liquids with and without the approximation of low wave velocity, and 
the condition necessary for linearization of the governing wave equation for a 
sonic gas jet submerged in a liquid with a disturbance a t  the gas-liquid interface, 
we chose air and water as an example of the most commonly available substances, 
air and mercury as a typical example of gas-liquid systems in which the liquid is 
very heavy and has a very high surface tension, and air and glycerin as a typical 
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FIGURE 9. The variation of the angle 0 as a function of the non-dimensional wavenumber 
with and the density ratio pg/p as parameters corresponding to the general solution of 
the dispersion equation. Curves as in figure 6. 

example of gas-liquid systems in which the liquid has a very high viscosity. 
Further, to illustrate the effect of changes in gas-flow parameters such as the 
velocity and gas density, we substituted xenon for air in these examples; xenon 
is a typical very heavy gas. To illustrate the above-mentioned conditions, we 
solved (6.1) and obtained the magnitude of these conditions at the maximum 
instability as a function of the density ratio. Figure 10 displays plot of 
h,K~/l?, la&] [see condition (6.23)] as a function of density ratio for the gas-liquid 
systems mentioned above. In  each example, the temperature at  the throat of jet 
was fixed at  room temperature, viz. 20 "C, and the lowest value of the gas density 
a t  the throat chosen in each exampIe corresponds to that at room temperature 
and pressure. Figure 10 shows that, for a given gas, fixed stagnation temperature 
and fixed density ratio, a jet of bigger diameter must be used for a highly viscous 
liquid than for a low viscosity liquid in order that the condition for linearization 
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FIUURE 10. The variation of hmKg(r,!a:l) corresponding to maximum instability as 
a function of the density ratio pr/p for various gas-liquid systems. 

of the wave equation be satisfied with the same margin. However, the values of 
the parameter A,K;/r, la:] for the examples considered (which in the author'6 
judgement embrace a very wide range of flow parameters) are so small that jet 
sizes together with the range of operating stagnation pressures employed in 
practice (e.g. in the field of pneumatic atomization) satisfy the condition for 
linearization of the wave equation, viz. a 9 AmKz/(r,la:I). Furthermore, as 
figure 10 shows, the margin with which this condition is satisfied increases very 
rapidly with increasing density ratio, or for a given gas-liquid system, with 
increasing gas density. For high viscosity liquids [for which condition (6.25) or 
(6.31) applies] and low wave velocity [for which condition (6.28) or (6.32) applies] 
as typified by glycerin, figure i0  shows that the parameter Amic:/l?,lazl for a 
given gas-liquid system varies as l/pg; this is also evident from condition (6.33). 
However, for low viscosity liquids and low wave velocity as typified approxi- 
mately by the air-mercury system [see conditions (6.22)] at low density ratios, 
the parameter AmK~/l?,/a~l varies approximately as l/p;" as is also evident 
from condition (6.23 b) .  

8. Summary and conclusions 
It is shown that the wave equation for a sonic gas jet submerged in a liquid 

with a disturbed gas-liquid interface can be linearized provided that the non- 
dimensional wave velocity lal//cV, h/a or la/ a/Ug > 1, i.e. that the time rate 
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of perturbations predominates. This condition for linearization for low and high 
viscosity liquids and low wave velocity (i.e. la]/KU, < 1) reduces to, respectively, 
We B 26(p/p,)@'J and We 9 361r:. It is demonstrated that most gas-liquid 
systems of physical interest satisfy the condition for linearization of the wave 
equation; for highly viscous liquids, however, this condition is more stringent 
than for low viscosity liquids. The analysis shows that the pressure perturbation 
exerted by the gas phase on the liquid layer at the gas-liquid interface is out of 
phase with the wave amplitude by an angle which varies with the flow and insta- 
bility parameters; consequently, energy is transferred to the liquid layer both 
through its wave-drag and 'lift' components. However, for low liquid viscosities 
the wave-drag component becomes very small in comparison with the lift com- 
ponent a t  and above the cut-off wavenumber. On the other hand, in the case of 
liquids having intermediate and large viscosities, the wave drag is always effective 
in the transfer of energy to the liquid layer, and there does not exist any cut-off 
wavenumber; the physical state of the liquid layer is always one of instability in 
spite of the stabilizing effect of surface tension and viscosity. 
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